THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH2060B Mathematical Analysis II (Spring 2017) HW7 Solution

Yan Lung Li

1. (P. 246 Q 4$)$

Case 1: $0 \leq x<1$: Since $\lim _{n \rightarrow \infty} x^{n}=0$, we have the following:

$$
\lim _{n \rightarrow \infty} \frac{x^{n}}{1+x^{n}}=\frac{0}{1+0}=0
$$

Case 2: $x=1$: Then

$$
\lim _{n \rightarrow \infty} \frac{x^{n}}{1+x^{n}}=\frac{1}{1+1}=\frac{1}{2}
$$

Case 3: $1<x<+\infty$: Since $\lim _{n \rightarrow \infty} \frac{1}{x^{n}}=0$, we have the following:

$$
\lim _{n \rightarrow \infty} \frac{x^{n}}{1+x^{n}}=\lim _{n \rightarrow \infty} \frac{1}{\frac{1}{x^{n}}+1}=\frac{1}{0+1}=1
$$

2. (P. 246 Q8)

We claim that $\lim _{n \rightarrow \infty} x e^{-n x}=0$ for all $x \geq 0$:
Let $\epsilon>0$ be given, choose $N \in \mathbb{N}$ such that $\frac{1}{N}<\epsilon$. Then by the inequality in Example 6.2 .10 of the textbook, $e^{x} \geq 1+x$ for all $x \in \mathbb{R}$. Therefore, for all $n \geq N, x \geq 0$

$$
\begin{aligned}
e^{n x} & \geq 1+n x \\
& >N x \\
& >\frac{x}{\epsilon}
\end{aligned}
$$

which implies $x e^{-n x}<\epsilon$ for all $n \geq N$. Therefore, for all $x \geq 0, \lim _{n \rightarrow \infty} x e^{-n x}=0$.
3. (P. 247 Q 14)
(i) Fix $0<b<1$, then by (4), for all $x \in[0, b], \lim _{n \rightarrow \infty} \frac{x^{n}}{1+x^{n}}=0$. We claim the convergence is uniform in $[0, b]$:

Given $\epsilon>0$, since $\lim _{n \rightarrow \infty} b^{n}=0$, there exists $N \in \mathbb{N}$ such that $b^{N}<\epsilon$. Then for all $n \geq N, x \in[0, b]$,

$$
\begin{aligned}
\left|\frac{x^{n}}{1+x^{n}}\right| & \leq \frac{b^{n}}{1+0} \\
& \leq b^{N} \\
& <\epsilon
\end{aligned}
$$

Therefore, the convergence is uniform in $[0, b]$.
(ii) We claim that the convergence is not uniform in $[0,1]$: By Q 4 , if the convergence were uniform, the uniform limit function would be given by

$$
f(x)= \begin{cases}0 & 0 \leq x<1 \\ \frac{1}{2} & x=1\end{cases}
$$

We use Lemma 8.15 of the textbook to show that $f_{n}(x)=\frac{x^{n}}{1+x^{n}}$ does not converge to f : Since $\lim _{n \rightarrow \infty}\left(1-\frac{1}{n}\right)^{n}=e^{-1}>\frac{1}{3}$, there exists $N \in \mathbb{N}$ such that for all $n \geq N,\left(1-\frac{1}{n}\right)^{n}>\frac{1}{3}$.
Choose $\epsilon_{0}=\frac{1}{4}, n_{k}=k+N, x_{k}=1-\frac{1}{k+N}$. Then

$$
\begin{aligned}
\left|f_{n_{k}}\left(x_{k}\right)-f\left(x_{k}\right)\right| & =\frac{\left(1-\frac{1}{k+N}\right)^{k+N}}{1+\left(1-\frac{1}{k+N}\right)^{k+N}} \\
& =\frac{1}{\left[\left(1-\frac{1}{k+N}\right)^{k+N}\right]^{-1}+1} \\
& >\frac{1}{3+1}=\frac{1}{4}=\epsilon_{0}
\end{aligned}
$$

Therefore, the convergence is not uniform.
4. (P. 247 Q18) Note that the argument in Q8 actually implies the following: For all $\epsilon>0$, there exists $N \in \mathbb{N}$ such that for all $n \geq N, x \geq 0, \lim _{n \rightarrow \infty} x e^{-n x}=0$. Therefore, the convergence is uniform.

